2340=3000-16t^2

Simple and best practice solution for 2340=3000-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2340=3000-16t^2 equation:



2340=3000-16t^2
We move all terms to the left:
2340-(3000-16t^2)=0
We get rid of parentheses
16t^2-3000+2340=0
We add all the numbers together, and all the variables
16t^2-660=0
a = 16; b = 0; c = -660;
Δ = b2-4ac
Δ = 02-4·16·(-660)
Δ = 42240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{42240}=\sqrt{256*165}=\sqrt{256}*\sqrt{165}=16\sqrt{165}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{165}}{2*16}=\frac{0-16\sqrt{165}}{32} =-\frac{16\sqrt{165}}{32} =-\frac{\sqrt{165}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{165}}{2*16}=\frac{0+16\sqrt{165}}{32} =\frac{16\sqrt{165}}{32} =\frac{\sqrt{165}}{2} $

See similar equations:

| 2.3=t/4.5 | | 6a+12=2(3a−8) | | 2^x=0.1968551799 | | 18=11y-2y | | 3(x+5)=-2(x+15) | | 3/8y+1/6=5/8y+1/3 | | 12x^2-176x-105=0 | | 0=5v^2+41v+42 | | 20s^2-32=0 | | 12x-4x+112=12x+64 | | 7n+12+13n-16=180 | | -7(w-9)=9w-33 | | 3x+9=-(4x+9) | | 7^3x-3=234 | | -8u+6(u-2)=-28 | | 4-5v=24 | | 42x–5=64 | | 0.4x-0.2(40+x)=0.2(50) | | 2(x+3)/5=(x-2)/3 | | 3(w+2)-5w=-12 | | 3x^2+x=260 | | 2x-3x(2x-1)=3-4x | | d+1/2=4 | | 16=-8x+3(x-8) | | 18n+13+5n=23n+13 | | 1(3)-3y=6 | | 4.1=9.5x=23.7 | | 1.9s+6=3.1-1 | | (3x+1)^2=-8x | | -4x+6=0.5(x+90) | | -28+p=7(p-20) | | 650/v2=0.125/0.600 |

Equations solver categories